Minimizers of abstract generalized Orlicz‐bounded variation energy

نویسندگان

چکیده

A way to measure the lower growth rate of φ : Ω × [ 0 , ∞ ) → $$ \varphi :\Omega \times \left[0,\infty \right)\to \right) is require t ↦ ( x − r t\mapsto \left(x,t\right){t}^{-r} be increasing in \left(0,\infty . If this condition holds with = 1 r=1 then inf u ∈ f + W ∫ | ∇ d \underset{u\in f+{W}_0^{1,\varphi}\left(\Omega \right)}{\operatorname{inf}}{\int}_{\Omega}\varphi \left(x,|\nabla u|\right)\kern0.1em dx boundary values f\in {W}^{1,\varphi}\left(\Omega does not necessarily have a minimizer. However, if replaced by p {\varphi}^p > r=p>1 and thus (under some additional conditions) corresponding energy integral has We show that sequence \left({u}_p\right) such minimizers converges when p\to {1}^{+} suitable BV \mathrm{BV} -type space involving generalized Orlicz obtain Γ \Gamma -convergence functionals fixed fidelity terms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONS OF GENERALIZED AREA FUNCTIONALS AND p-AREA MINIMIZERS OF BOUNDED VARIATION IN THE HEISENBERG GROUP

We prove the existence of a continuous BV minimizer with C boundary value for the p-area (pseudohermitian or horizontal area) in a parabolically convex bounded domain. We extend the domain of the area functional from BV functions to vector-valued measures. Our main purpose is to study the first and second variations of such a generalized area functional including the contribution of the singula...

متن کامل

Existence of Energy Minimizers for Magnetostrictive Materials

The existence of a deformation and magnetization minimizing the magnetostrictive free energy is given. Mathematical challenges are presented by a free energy that includes elastic contributions defined in the reference configuration and magnetic contributions defined in the spatial frame. The one-to-one a.e. and orientation-preserving property of the deformation is demonstrated, and the satisfa...

متن کامل

Characterization of energy minimizers in micromagnetics

Article history: Received 13 November 2009 Available online 27 August 2010 Submitted by V. Radulescu

متن کامل

Minimizers of Curvature-Based Surface Energy

Curvature based surface optimization is an important constituent of various geometric modeling and scientific computing tasks. Smooth surfaces are often modelled in a variational setting, where the objective function is used to express the beauty of the shape. Optimization is also used for fitting a smooth, virtual surface to samples of a real, scanned object. Energy minimizing surfaces are als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2023

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.9042